
Fluctuation-induced phase in  in a transverse magnetic field: theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 6405

(http://iopscience.iop.org/0953-8984/10/28/019)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 6405–6416. Printed in the UK PII: S0953-8984(98)92165-8

Fluctuation-induced phase in CsCuCl3 in a transverse
magnetic field: theory

A E Jacobs† and Tetsuro Nikuni‡
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

Received 27 February 1998

Abstract. CsCuCl3 is a quantum triangular antiferromagnet, ferromagnetically stacked, with
an incommensurate (IC) structure due to a Dzyaloshinskii–Moriya interaction. Because of the
classical degeneracy caused by the frustration, fluctuations in CsCuCl3 have extraordinarily large
effects, such as the phase transition in longitudinal magnetic field (normal to the planes, parallel
to the IC wavenumberq) and the plateau inq in transverse field (perpendicular toq). We argue
that fluctuations are responsible also for the new IC phase discovered in transverse field near
the Ńeel temperatureTN, by Werneret al (Werner T, Weber H B, Wosnitza J, Kelnberger A,
Meschke M, Schotte U, Stüßer N, Ding Y and Winkelmann M 1997Solid State Commun.102
609). We develop and analyse the corresponding minimal Landau theory; the ground-state
reconstruction due to fluctuations is described phenomenologically, by means of a biquadratic
term. The Landau theory gives two IC phases, one familiar from previous studies; the properties
of the new IC phase, which occupies a pocket of the temperature–field phase diagram nearTN,
agree qualitatively with those of the new phase found experimentally.

1. Introduction

Compounds based on the triangular antiferromagnet (TAFM), particularly members of the
ABX 3 family, have provided a wealth of interesting behaviour and indeed many surprises, as
recently reviewed [1]. Because of the extraordinarily large effects of quantum and thermal
fluctuations, CsCuCl3 (with Néel temperature [2]TN = 10.65 K and zero-temperature
saturation fieldHS ≈ 30 T) ranks among the most interesting of these compounds; the
surprises began 20 years ago [3] and continue still, in theory as well as in experiment.

The magnetic properties of CsCuCl3 are due to the Cu2+ ions (S = 1/2); these form
a stacked triangular lattice, to a good approximation. The interaction in the planes is
antiferromagnetic and therefore frustrated. Normal to the planes (in the chain orc-direction),
a ferromagnetic interaction competes with a Dzyaloshinskii–Moriya (DM) interaction [4],
giving an incommensurate (IC) structure with wavenumberq = qẑ in the c-direction. In
more detail, the classical, zero-temperature structure in zero magnetic field is the three-
sublattice,±120◦ TAFM structure; the spins lie in the planes, rotating by≈5.1◦ per plane
[5]. Application of a magnetic field yields a variety of interesting phenomena related to
the classical degeneracy of the TAFM; recall that the classical ground state of the TAFM
is continuously (and also discretely) degenerate, even in a magnetic field, and also that
thermal fluctuations [6–9] in classical models and quantum fluctuations [10–12] break the
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continuous degeneracy in the same way, both selecting for example the collinear structure
atH ≈ HS/3.

In longitudinal magnetic field (normal to the planes, parallel toq), the low-temperature
magnetization is discontinuous [3, 13, 14] atH ≈ 0.4HS, due to a novel, fluctuation-
induced phase transition [15, 16]: the umbrella structure is optimal at smallH (due to a
small, easy-plane anisotropy in the interplane exchange [17]) and a coplanar structure is
optimal at largerH (due to quantum fluctuations). Other experiments [18–25] support the
Nikuni–Shiba analysis [15, 16]. In summary, CsCuCl3 in longitudinal field appears to be
understood, except that the transition at high temperatureT has puzzling features [25].

A transverse field (in the planes, perpendicular toq) gives more surprises. The behaviour
at low fields is conventional and understood from classical (mean-field) theory [26, 27]:q

decreases quadratically withH , and the curvature increases [20, 22] withT . Classical
theory [26] predicts a transition to the commensurate (C) phase atH ≈ 0.47HS (at T = 0),
as recently observed [28] (though atH ≈ 0.58HS). Classical theory fails in other respects.
At low T , unusual behaviour occurs for fields nearH = HS/3, well below the IC→ C
transition; structure is found in the magnetization [14], in the133Cs NMR shift [23], in the
IC wavenumber (reference [20] finds a plateau), and in ESR measurements [21]. At high
T , a second IC phase appears, andTN increases with field [29].

The phase diagram nearTN was recently found [30] for field orientations between
longitudinal and transverse.

In transverse field, the structure nearHS/3 at lowT seems related to changes, induced
by quantum fluctuations, in the structure of the TAFM near the same field [10–12]. Linear
spin-wave (LSW) theory, which adds the leading quantum correction to classical theory,
gives a plateau in the magnetization of the C state [31, 32] (as for the TAFM), a promising
start. But there is another surprise, this time in theory. Not only does LSW theory of the
IC phase fail to explain any of the other results, it actually provides a worse description
of the IC phase than does classical theory, by predicting a premature IC→ C transition
[31, 32] atH ≈ 0.32HS. LSW theory fails because it omits the major effect of fluctuations,
namely the reconstruction of the IC ground state, an effect apparently new with CsCuCl3.
An innovative, phenomenological method [31, 32] for treating fluctuations was proposed,
justified (by verifying that it explains qualitatively the magnetization plateau in the TAFM),
and then used to find the order parameter in the IC phase of CsCuCl3 in transverse field. The
wavenumber plateau [20, 28] nearH ≈ HS/3 was successfully explained, even its level; the
theoretical value (H ≈ 0.44HS) for the field at the IC→ C transition [28] is however too
small, and the magnetization is not predicted well, suggesting that the phenomenological
theory can be improved.

Both new findings [29] nearTN, namely the increase ofTN with field (as in the TAFM
[6, 8, 33]) and the second IC phase, are probably due to thermal fluctuations; neither has
yet been treated theoretically. Because a microscopic or numerical treatment of fluctuations
is out of the question for a vector-spin system with a nonsinusoidal IC structure, we use
phenomenology. To treat a particular aspect of fluctuations nearTN, namely the breaking
of the classical TAFM degeneracy and the resulting thermal reconstruction of the IC ground
state, we add to the standard Landau theory a term biquadratic in the order parameter, as
in our treatment [31, 32] of quantum fluctuations atT = 0; this term appears neither in the
Hamiltonian nor in mean-field theory [27] at anyT . Of course this term is not intended
to include fluctuation effects in general (such phenomenology cannot possibly explain the
reduction ofTN from the mean-field value of 35.5 K to the experimental value of 10.65 K).

In qualitative agreement with experiment [29], the Landau theory predicts a second IC
phase to exist in a smallT –H region nearTN. As discussed in the preceding article [34]
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and in section 4, the theory explains other properties of the new phase, qualitatively, though
not the increase ofTN with H . The new phase is the high-T version of a state which arose
in the classical theory [26]; the state exists at allT in classical (mean-field) theory [26, 27],
but is never optimal. The new phase owes its existence to thermal fluctuations; these are
strong enough to overcome a small classical energy difference, just as quantum fluctuations
in longitudinal field overcome the small anisotropy [15, 16]. A unifying feature is that the
two most striking of the experimental results in transverse field, namely the plateau [20, 28]
in q and the new phase [29] nearTN, are explained using the same phenomenological
treatment of fluctuations, in [31, 32] and here respectively.

Remarkably then, CsCuCl3 displays a fluctuation-induced phase transition in transverse
field, and a different fluctuation-induced phase transition in longitudinal field.

2. Hamiltonian

The main interactions are described by the Hamiltonian

H =
∑
in

[
−2J0Sin · Si,n+1−Dẑ · (Sin × Si,n+1)+ J1

∑′

k

Sin · Skn − gµBH x̂ · Sin
]

(1)

whereSin is the spin operator at theith site in thenth a–b plane,ẑ andx̂ are unit vectors
in the c- and a-directions, and thek-sum is over the six, in-plane, nearest neighbours
of the site in. The first term (∝J0) is the isotropic, ferromagnetic exchange interaction
between spins in nearest-neighbour planes, the second (∝D) is the interplane DM interaction,
the third (∝J1) is the isotropic, frustrated, antiferromagnetic exchange interaction between
nearest-neighbour spins in thea–b planes, and the fourth is the Zeeman energy in a field
H transverse to the chains. We omit the easy-plane anisotropy [17] in the interplane
interaction, the dipole–dipole interaction, and several other effects. The coefficients have
been estimated previously [2, 5, 35, 36, 17, 37]; we useJ0 = 28 K, J1 = 4.9 K, and
D = 5 K. The saturation field, above which each spin is aligned with the field atT = 0, is
HS = 18J1S/(gµB) ≈ 30 T.

At the classical level, the intrachain exchange term(J0) favours states with spins parallel
in adjacenta–b planes while the smaller DM term (D) favours states with spins in the
planes and rotating byπ/2 per plane. At zero field, for allT < TN, the spins lie in
the planes, forming the 120◦ structure with three sublattices. The structure normal to the
planes is helical; the wavenumber atH = 0 is q0ẑ whereq0 = arctan(D/(2J0)) ≈ 2π/71.
A transverse field deforms the helical structure, which becomes highly nonsinusoidal at
higherH .

For T = 0, the above Hamiltonian was investigated in the classical approximation [26],
and the leading quantum correction was obtained using LSW theory [31, 32]. As discussed
above, neither theory can account for the structure observed nearHS/3.

The extension of classical theory toT > 0 (by mean-field theory) gives a phase diagram
[27] with only one IC phase, and so an understanding of the new IC phase nearTN seems
to require including fluctuations at some level. A satisfactory microscopic treatment of
fluctuations in CsCuCl3 is out of the question atT = 0, and they are even more difficult to
treat forT > 0, leaving it seems only a phenomenological approach. For generalT > 0,
one could simply add the biquadratic term [31, 32] to the mean-field expression [27] for
the free energy, but the coefficient would have to be adjusted as fluctuation effects increase
with T , requiring a fit at eachT or strong guidance from theory; this approach would be
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most reasonable nearTN, if the mean-field free energy were expanded to fourth order in the
order parameter. We have chosen instead to use a fourth-order Landau theory.

3. Landau theory

The following describes a minimal Landau theory of CsCuCl3 nearTN; usually, Landau
theory is reliable regarding the phase diagram, less reliable regarding the order of the
transitions, and unreliable regarding fine details like the position dependence of the order
parameter. We assume a structure with three sublattices in thea–b planes and with period
L in the c-direction (in units of the layer spacing); the restriction to integerL causes no
difficulty [32]. We assume also that the spins remain in thea–b planes at allH and T .
Curiously, the DM term is not sufficient for this [38, 32]; the easy-plane anisotropy [17]
helps of course, but fluctuation effects seem to be necessary [32]. In mean-field theory, the
free energy would be expressed in terms of the site-dependent magnetization〈Sj l〉, where
j = 1, 2, 3 is the sublattice index andl = 1, . . . , L is the layer index. In Landau theory,
the free energy is expanded in the order parametermj l , which is only proportional to〈Sj l〉.

Explicitly, we use the following expression for the free energyF of theN spins, relative
to the paramagnetic state atH = 0:

F = N

3L

3∑
j=1

L∑
l=1

[
1
2α1m

2
j l + α2mj l ·mj+1,l − hx̂ ·mj l + 1

4γ1m
4
j l − 1

2γ2(mj l ·mj+1,l)
2

− δ1mj l · (mj,l+1−mj l)− δ2ẑ · (mj l ×mj,l+1)
]
. (2)

For stability, γ1 > 0 andγ2 < 0.5γ1. This expression differs in major respects from the
mean-field expansion to fourth order inm (or 〈S〉). First, we omit many terms of the same
order as the ones that we keep, second order as well as fourth order; more importantly,
we add a fourth-order term (coefficientγ2) which does not appear in the expansion, as
discussed in the next paragraph. All seven terms are essential. The terms with coefficients
α1 andγ1 are standard, while those with coefficientsα2, δ1, andδ2 result respectively from
the in-plane antiferromagnetic interaction, the interplane ferromagnetic interaction, and the
DM interaction; the terms inα1 andδ1 are adjusted so that the latter makes no contribution
to the energy of the commensurate state. The term with Landau parameterh (proportional
to the magnetic fieldH ) is the Zeeman energy.

The remaining term, the biquadratic term− 1
2γ2(mj l · mj+1,l)

2, appears neither in
the Hamiltonian nor in the mean-field theory [27]; it represents some effects of thermal
fluctuations, at the phenomenological level [39]. In the TAFM and in the C state of CsCuCl3

[26], fluctuations break the classical degeneracy, selecting one state at the LSW level. Their
effect on the IC phase of CsCuCl3 is more profound. First, the IC structure forbids the
selection possible in a C structure. Second, the classical IC phase is unconventional, being
well described as a continuous sequence of degenerate C states [26]. Fluctuations break
the degeneracy, reorienting the spins to give a conventional IC phase with domain walls
separating nearly C regions. LSW theory of the IC phase fails because it cannot account
for the reorientation and the resulting reconstruction of the IC ground state.

From the Hamiltonian, we expect the coefficientsα2, δ1, andδ2 to be proportional to
6J1, 2J0, andD respectively. To reduce the number of parameters, we normalize the order
parameter and the free energy so thatα2 = 1 andγ1 = 1. Then the interlayer coefficients
are δ1 = 2J0/(6J1) ≈ 1.9 andδ2 = D/(6J1) ≈ 0.17. Of the remaining parametersα1, h,
andγ2, only α1 depends onT . At H = 0, the IC–paramagnetic transition atTN(0) occurs
at α1 ≈ 1.015; α1 = 1 is the upper limit of the C phase atH = 0. In Landau theory, the
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transition atTN(0) is second order. Experiment [25] finds tricritical or weakly first-order
behaviour; the latter is obtained in a recent Monte Carlo analysis [51] of a related model.

The unknown constants of proportionality involvingm and h can be determined by
comparing the Landau and mean-field theories. From equation (2), the Landau energy (per
spin) of the paramagnetic state atα1 = 1 is 3

2m
2 − hm + 1

4m
4. The corresponding mean-

field expression is found by settingβS2JC = 1 in equation (3.2) of [27]:

J
JC

(
18J1〈S〉2− 2gµBH 〈S〉 + 4

3S2

J 3

J 2
C

〈S〉4+ · · ·
)

where JC = 4J0 + 6J1 and J = 2J0 − 6J1. Because the mean-field expression omits
fluctuations, the term inγ2 must be omitted from the Landau expression. On setting
〈S〉 = am and comparing coefficients, one findsh = kH/HS(0) where k = 3S/a and
k2 = 4J 3/(J 2

CJ1); the numerical value isk ≈ 0.88.
The Euler–Lagrange equations of the above Landau theory have many solutions, namely

the paramagnetic (P) solutionmj l = mPx̂, several commensurate (C) solutions, and many
incommensurate (IC) solutions; the following provides some background for the last. In
classical theory [26], the magnitudes of the site magnetizations are fixed and the phases
suffice for a complete description. A single IC solution is optimal at all fields below the
IC → C transition (predicted to occur atH ≈ 0.47HS); in this solution (called the 111
solution), the spins on all three sublattices wind through 2π over a periodL of the IC
structure. Many other IC solutions exist at fields below the transition. In the 110 solution,
which is never optimal, the spins on only sublattices 1 and 2 wind through 2π over one
period, while the spins on sublattice 3 wobble about the field without winding. The 111
and 110 solutions, and many other solutions generated from them by forming composite
solutions [26], become degenerate at the IC→ C transition, which is therefore a multi-
phase point. In mean-field theory [27], forT > 0, the magnitudes of the magnetizations are
no longer fixed; they can adjust to minimize the energy (for example by decreasing near a
domain wall). The solution corresponding to the 111 solution is again optimal in all cases;
it loses its winding character at largerT andH where the orbit in themx–my plane no
longer encircles the origin. The infinite degeneracy at the IC→ C transition remains at
T > 0.

The Landau-theory states corresponding to the 111 and 110 solutions are most easily
described atH = 0 (where the wavenumber isq0 for both). For the first (IC1),

mj l = m1
[
x̂ cos(q0l + φj )+ ŷ sin(q0l + φj )

]
for j = 1, 2, 3 (3)

with φj = φ0+ (j − 1)2π/3. For the second (IC2),

m1l = −m2l = m2
[
x̂ cos(q0l + φ0)+ ŷ sin(q0l + φ0)

]
m3l = 0. (4)

This is stable atH = 0 only for α1 & 0.99, but solutions at lowerα1 andH > 0 are easily
found. The first has the lower energy atH = 0, for all T . For the same amplitude, the
first optimizes theα2-term in the density of equation (2), while the second optimizes the
biquadratic term; the respective energies are− 3

2α2m
2 − 3

8γ2m
4 and−α2m

2 − 1
2γ2m

4. It is
then possible that the second can have the lower energy, though only forH > 0.

For H > 0, some analytical results can be found at small field [26, 27], but full
numerical solutions of the Euler–Lagrange equations are required at general values ofH .
Solutions were found by repeated linearization about trial solutions and solution of the
linearized equations for the corrections. With increasingH , both solutions evolve, becoming
increasingly nonsinusoidal; other solutions are found, but these are never optimal. In the
second solution, the order parameter on the third sublattice increases from 0 and wobbles
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aboutH with periodL/2. Phase diagrams follow from comparison of the energies of the
IC, P, and C solutions.

4. The phase diagram and other results

Because equation (2) cannot explain both the new IC phase and the increase ofTN with
H , and also because equation (2) omits many terms of the same order as those kept, a
detailed comparison with experiment is not attempted; fine details of the results should not
be relied upon. The only parameter in the theory (apart from the unknown constant relating
α1 to T ) is the fluctuation coefficientγ2; its sign is positive [31, 32], but the strength of
the fluctuations is unknown, and so its magnitude is adjustable. The valueγ2 = 0.2 used in
the following was chosen, with guidance from experiment [34], to give a reasonable size to
the IC2 region of the phase diagram, and also to the plateau inq/q0 for the IC1 phase (as a
function ofh); 0.1 seems too small and 0.3 too large. Actually, the new phase appears even
at γ2 = 0, but only in a thin sliver (1h 6 0.024) of the phase diagram, with re-entrance
and with no sizable plateau.

0.93 1.00
α1

0.0

0.2

0.4

0.6

0.8

h

P

IC
IC

1
2

C

Figure 1. The phase diagram in theα1–h plane forγ2 = 0.2. The Landau parameterα1 is linear
in the temperatureT , andh ≈ 0.88H/HS(0). The paramagnetic phase (P), the commensurate
phase (C), and the two incommensurate phases (IC1 and IC2) are optimal in the regions indicated.

4.1. The new phase

Figure 1 shows the theoretical phase diagram nearTN; again,α1 is linear inT (α1 = 1.015
at TN(H = 0)) andh ≈ 0.88H/HS(0). The two IC phases (IC1 and IC2), the P phase, and
the C phase are optimal in the regions indicated; the C phase is them1 =m2 phase of the
stacked TAFM. The new feature here is the IC2 phase.

The companion article [34] presents the strongest evidence for identifying the IC2 phase
with the new IC phase discovered in [29]: the neutron-scattering intensity as a function
of wavenumber is qualitatively that expected from the order parameter of the IC2 phase.
Reference [34] compares theory and experiment in other respects as well. The following
compares several aspects of the phase diagrams; it also presents results for the dependence
of the IC wavenumbers onT andH , and for the order parameters in the two IC phases.
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4.2. The phase diagram (qualitative aspects)

In figure 1, as in figure 3 of [34], the new phase appears in a smallT –H region nearTN.
In both, the new phase appears only above some field, and a narrow tail extends to the
low-T side. Landau theory misses the increase ofTN with H and therefore also the nose;
experimentally, the region of the new phase is shaped more like a croissant than a pocket.

4.3. The phase diagram (the order of the transitions)

The fields available in the high-T neutron measurements [29, 34] were not sufficient to
observe the C phase, nor of course the IC1 → C and C→ P transitions; the IC1 → C
transition was however observed [28] at lowT , atH ≈ 18 T.

In theory, all four of the other transitions in figure 1 are first order. IC1 → IC2 is
strongly first order, while the three transitions to the P state (IC1 → P nearTN, IC2 → P
and IC1 → P at lowerT ) are weakly first order (the free energies cross with almost the
same slope); the IC1→ P transition is second order atH = 0.

In experiment, only IC1→ IC2 is unambiguously first order. The scan [34] at 10.34 K
can be interpreted in two ways [52]: either the tail of the IC2 phase was missed, or there
is a first-order IC1→ P transition atH ≈ 12 T. The IC2→ P transition is almost certainly
second order, from the observation of critical scattering [34].

4.4. The phase diagram (other aspects)

In theory, the IC2 phase is not found at anyT if h < 0.10 or if h > 0.34, corresponding
to H < 3.4 T andH > 11.6 T. In experiment, the lower limit isH = 4.3± 0.3 T; if the
IC2 phase does not appear at 10.34 K, then the upper limit is 11.5± 0.5 T. The agreement
is reasonable. Independent of the constantk relatingh andH , the relative widths in the
field variable are comparable: 11.5/4.3 ≈ 0.34/0.10. The nose in the experimental phase
diagram prevents a similar analysis for the temperature variable; for example, we cannot
estimate reliably the upperT -limit of the C phase (but none of our estimates disagrees with
the data).

0.00 0.20 0.40 0.60 0.80
h

0.0

0.2

0.4

0.6

0.8

1.0

q/
q 0

α1=0.93
α1=0.96
α1=0.98
α1=1.005

Figure 2. The reduced wavenumberq/q0 as a function of the Landau fieldh for four values of
the Landau parameterα1.
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4.5. Wavenumbers of the IC phases

Figure 2 shows theoretical results for the reduced wavenumberq/q0 as a function ofh, at
four values ofα1.

For α1 = 1.005, there are two transitions ash increases, IC1→ IC2 at h ≈ 0.137 and
IC2 → P ath ≈ 0.202, both first order in theory; at the first,q increases discontinuously
to a value less than the zero-field valueq0. In theory,q/q0 for the IC2 phase is roughly
independent ofh, for fixed α1. The dependence onα1 is stronger, but still weak; the value
decreases roughly linearly withα1, from q/q0 ≈ 0.98 at α1 = 1.01 to q/q0 ≈ 0.88 at
α1 = 0.995. The experimental value [34] forq/q0 in the IC2 phase is≈0.87; this is larger
than in the IC1 phase, as in theory; on the other hand, no dependence onT or H was
observed.

At lower T (α1 = 0.98 and 0.96),q decreases ash increases, flattens out, bends over,
and then drops discontinuously in a first-order transition to the P phase. Atα1 = 0.93
(apparently corresponding to lowerT than used in [34]),q forms a reasonable plateau
before rounding and falling to zero in a weakly first-order transition to the C phase; at
slightly largerh, a second-order transition occurs to the P phase.

Theoretically, the plateau inq/q0 occurs at≈0.6, almost independently ofα1; the level
of the plateau is reasonably robust (forγ2 = 0.3, the plateau occurs atq/q0 ≈ 0.56).
Figure 1 of the preceding article [34] compares these results with the available data.
Experiment finds a plateau (as in theory), at about the theoretical level (q/q0 ≈ 0.6),
for bothT = 10.34 K andT = 9.95 K; the latter data are slightly rounded at higherH , as
in theory forα1 . 0.98. Data were not obtained at low fields whereq descends from the
zero-field value to the plateau, preventing more detailed comparison with theory.

-0.4 -0.2 0.0 0.2 0.4
mx

-0.4

-0.2

0.0

0.2

0.4

m
y

Figure 3. The IC1 phase: the orbit in themx–my plane for the order parameter on one of
the three equivalent sublattices. The Landau parameters areα1 = 0.96 andh = 0.4 (near the
middle of the plateau in figure 2); the periodL is 116. The order parameters on the other two
sublattices are displaced byl = ±L/3 from the first.

4.6. Order parameters

Figure 3 shows the order parameter for the IC1 phase, for Landau parametersα1 = 0.96
andh = 0.4 (near the middle of the plateau in figure 2). At maximummx , the configuration
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-0.2 -0.1 0.0 0.1 0.2
mx

-0.2

-0.1

0.0

0.1

0.2

m
y

Figure 4. The IC2 phase: the orbits in themx–my plane for the order parameters on two of the
three sublattices. The Landau parameters areα1 = 1.005 andh = 0.18 (near the middle of the
pocket in figure 1); the periodL is 74. The outer loop is the orbit for one of the two equivalent
sublattices; the orbit for the second is displaced byl = L/2. The order parameter on the third
sublattice (inner loop) wobbles about the field with periodL/2.

is almost collinear. Figure 4 shows the order parameter for the IC2 phase, forα1 = 1.005
andh = 0.18 (near the middle of the pocket in figure 1). Figures 8 to 10 of [34] provide
other views of the order parameters in the two IC phases.

Neutron scattering does not determine the order parameter uniquely, and so detailed
comparison with experiment is not possible. As discussed in the companion article [34],
Landau theory succeeds qualitatively in describing the experimental results, particularly the
central component for the IC2 phase. The theoretical order parameter in the IC1 phase
(figure 3) is too distorted, due to the retrograde motion. That in the IC2 phase agrees
reasonably well, although the third sublattice is not visible in the available data.

5. Summary

Landau theory with the biquadratic term explains the appearance of the new IC phase found
[29, 34] nearTN. The new phase is the Landau-theory counterpart of the 110 state studied in
[26], but stabilized by fluctuations. Only coarse adjustment of the only available parameter
(the coefficientγ2 of the biquadratic term) is needed to obtain qualitative (in some cases
quantitative) agreement with experiment.

In more detail: Landau theory finds a new IC phase to exist nearTN. It explains
[34] qualitatively the neutron-diffraction results for both IC phases. It does not explain the
increase ofTN with field, but it explains other features of the phase diagram. It predicts
moderately well the order of the transitions. It predicts that the wavenumberq of the IC2

phase is larger than in the IC1 phase, as observed; the experimentalT -dependence ofq is
however weaker than predicted. It predicts that the plateau in the wavenumber of the IC1

phase occurs atq/q0 ≈ 0.6, as observed. Theory and experiment agree qualitatively with
respect to the order parameters.
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Appendix. Extended Landau theory

The Ńeel temperatureTN increases initially with field for the TAFM because of thermal
fluctuations [6, 8, 33]. It increases also for CsCuCl3 [29, 34], for (one believes) the same
reason. Since equation (2) cannot explain the increase, it is natural to ask whether an
extended Landau theory can do so. To investigate this question, we add to the square
brackets in equation (2) the following sum of fourth-order invariants (from a Landau-mean-
field theory [50] of the ferromagnetically stacked TAFM withXY -spins):

1
4γ3m

2
j l

3∑
k=1

m2
kl + γ4m

2
j l

3∑
k=1

mkl ·mk+1,l + 1
2γ5mj l ·mj+1,l

3∑
k=1

mkl ·mk+1,l

+ γ6m
2
j l(mj−1,l ·mj+1,l). (A1)

Our coefficients are related to those of [50] by

B1 = γ1− 1
2γ2+ 3γ3− 6γ4+ 3

2γ5− 2γ6

B2 = γ1− 2γ2+ 4γ6

B3 = γ1− 2γ2+ 3γ3+ 12γ4+ 6γ5− 4γ6

B4 = γ1− 1
2γ2− 2γ6

B5 = γ1+ γ2+ 3γ3+ 3γ4− 3γ5+ γ6

B6 = γ1+ γ2+ γ6.

(A2)

Equation (3) of [50], withBi = 9TN/5 for i = 1 to 6, reduces to our equation (2) with the
last three terms (coefficientsγ2, δ1, andδ2) omitted, although some effort is needed to see
this. The collinear phase cannot be obtained in mean-field theory; it appears at intermediate
fields if only B4 is different from (less than) the otherBi , or if B2 (or B3) is different [50].

For the stacked TAFM, atT sufficiently belowTN, the phase sequence with decreasing
H must be: P phase→ C phase withm1 =m2→ collinear C phase→ low-field C phase;
a little analysis gives the requirementsγ2 > 0, B3 > 0 andB5 > 0. If the P→ C transition
is second order (as ath = 0, α1 = α2), we find that the phase boundary is given by

h2 =
(
α2− α1

B5

)[
(α1+ 2α2)+ B3

B5
(α2− α1)

]2

. (A3)

SinceB5 > 0, this theory cannot explain the increase ofTN with H for the stacked TAFM;
therefore we believe that it cannot explain the corresponding increase for CsCuCl3.

We also used the extended theory to determine several phase diagrams like figure 1, for
several different sets of parameters. The C, P, and IC1 phases always appear, as does the IC2

phase (unless of courseγ2 is sufficiently negative). Generally, the more complicated free
energies (those with more of theγi-parameters6=0) give more complicated phase diagrams
(with for example re-entrant phases), but no new phases are found.
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